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Discovery of Closed Orbits of Dynamical
Systems with the Use of Computers

Ja. G. Sinai! and E. B. Vul!

Received October 15, 1979

In this paper we derive a general criterion which can be used for the discovery with
the use of a computer of closed orbits of systems of ordinary differential equations.
We apply this criterion to the Lorenz model and show rigorously the existence of a
closed orbit for the case under consideration. In a subsequent paper we shall show
how the stable manifold of this orbit determines the boundary of the stochastic
attractor.
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1. INTRODUCTION

One of the most striking recent results in the theory of dynamical systems is
the discovery of many examples of dynamical systems described by rather
simple systems of ordinary differential equations where numerical in-
vestigations show the presence of stochastic behavior (Lorenz model, Henon
attractor, etc.).!™® There is no doubt that in many cases the rigorous
treatment of such systems will be based upon information obtained with the
help of computers. Thus there is a wide class of problems where rigorous
results will be obtained with the use of computers.

This paper is the first in a series whose goal is the presentation of a
criterion of stochasticity which can be checked by a computer. Here we
consider the much simpler problem of the discovery by computers of closed
orbits of systems of ordinary differential equations having the form

dx;/dt = fi(x; .y X,), 1<i<d (1)
or, briefly, dX/dt = F(X). This problem arises in the investigation of
stochasticity in the Lorenz model because, according to the results of
Afraimovich et al.," the boundary of the stochastic attractor is defined on
the base of stable manifolds of corresponding closed orbits.
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In Section 2 we formulate our main criterion for the existence of a closed
orbit of the system (1) and present estimates of the coefficients which enter into
the criterion. The computer is used to obtain these estimates and to verify the
corresponding inequality. In Section 3 we prove the main criterion, and in
Sections 4-7 we derive the estimations. The reader interested only in
applications can omit these sections. In Section 8 we show the application of
the criterion to the Lorenz model, proving rigorously the existence of a closed
orbit for it for a special set of values of the parameters.

Now we give our main notations. X, Y, Z are d-dimensional vectors; their
coordinates are denoted by lower case letters x;, 1 €< d, or x,(X), x{(Y),
x{(Z), and the norm || X || = (Y-, x,°)"/2. The one-parameter group of shifts
along the trajectories of (1) is denoted by {S,}. Let @ be a fixed number; I’
= {X|x,(X) = a} is a hyperplane in R?. Other notations are related to a
neighborhood of a fixed interval y of a trajectory (1) which begins at the point
X®er:

y={XO), 0<1<T), XO®%) = §X90) = S X

Namely, W,(y) is the p-neighborhood of y, and U (X'?) is the p-neighborhood
of the point X® of the form

a-1
2 [x(X) = x(XNP < p?, Ix(X) —al < P}

i=1

U (X©) = {X

UDXO) = U(X)NT

F'(X)is the matrix || df,(X)/0x;||. The value of p depends on the problem under
consideration. We shall consider the linearized system corresponding to v,
namely dZ/dt = F'(S,X'?)Z. We shall denote by #(t,, t,) the fundamental
matrix of solutions of this system on the interval ¢, <7 < t,. We put
Ci= max [Z(r, 1)
0t < <T

Suppose that the terms on the right-hand side of (1) are such that one can find
a constant C, for which

P*fi(X)

CIRAT
0x; 0x, i

SGIYIIZE, Xe W,y
i,j.k
This constant always exists if the f; are polynomials of powers not more than
two. Further, let
Cy= inf [f(X), C,= max max|f(X)|

Xe Up(X19) XeUp(X®) i

Cs= max [F(X)|, C¢= max [FX)|

XeUp(X(0y X € Up(X10))
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2. MAIN CRITERION FOR THE EXISTENCE OF A CLOSED
ORBIT OF (1) AND ITS VERIFICATION BY COMPUTER

We begin with a theoretical criterion for the existence of a closed orbit of
(1). Assume that the terms on the right-hand side of (1) are C* functions.
Choose a hyperplane I' and an initial point X9 = {x{9,..., x{"} e . We
suppose that for some T > 0 the point S;X0 = XMW el ¢ = || XV — X O
and in a sufficiently small neighborhood U < T of the point X© a Poincaré
C* mapping is defined which transforms a point X € U into a point PXeT’
with the help of the shift along the trajectory of the point X, PX©® = XV, We
can expand P in a Taylor series in the neighborhood of the point X®. We put

Y=X- X9, Q(Y) = P(X) — X9, XeU
and write Q in the form
O(Y) =Y+ LY+ Q(Y)

Here Y9 = X — X I is the matrix of the linear part of Q at the point ¥
=0, and Q, is a nonlinear correction term. Suppose that the mapping Q
satisfies the following condition: there exist positive constants p,, K, such that
for an arbitrary p < p, and arbitrary Y, Y, |[Y'| < p, | V"] <p

10:(Y") = Q(Y")| < Kop| Y — Y|
This inequality expresses the quadratic character of Q,.
Criterion. Let | Y] = ¢ and for some p, < p,
(L — E)""(e/po + Kopo) < 1

Then in the p, neighborhood of X'© there exists one and only one fixed point
of Q.

We shall use a computer to verify the validity of the last inequality. First
we shall write down the estimations of all the numbers which enter into the
main inequality. These estimations have been obtained under the assumption
that the terms on the right-hand side in (1) are polynomials of powers not
more than two. This is the most frequent case in applications.

Estimation of e. Consider a finite-difference method with step Af
= A: X;, = RX;, where Ris a transformation which is an approximation of
S,. In fact we get a sequence of points X, = X, X, X,,... X,, | Xi.,
— RX;| < o. The value of a depends upon the precision with which the
calculations are performed and is the only parameter that takes into account
the properties of the computer that is used. In the general theory of dynamical
systems a sequence of points X;, 0 <i<n, [|X;,; — RX,| < «, is called a
pseudotrajectory (see the paper by Bowen® on the role of this concept in
differential dynamics).
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In the case under consideration the calculations have been performed
until the corresponding intersection of the pseudotrajectory with the hyper-
plane T". Let x,(X,,_;) = a and x,4X,) < a for some n. Using the usual linear
interpolation we can find the point X for which x,(X) = a. If P(X®) = x®),
we have

e=XO ~ XY <X — XD + || X — X 2)

The number | X — X@|| is found from the results of calculations. We can write
for the first term in (2)

1X = XOp < XD = S0 X @ — (X = X + 1S, X — X,

The number |S,,X® — X,|| is an error which appears as the result of the
difference method used. In Section 5 we derive an estimate of this error in the
case of the difference method convenient for systems (1) where the terms on
the right-hand are polynomials of second power. This estimate takes the form

1Sua X — X,|| < CinA*4 3
where A is the least root of the quadratic equation
A = 2(nAPAC3CLA4% = oA™? + A[MCs/d)? + 5C,C7] @)
The estimation of the difference |X — S, X© — (X — X,)| is done
explicitly.

Estimation of matrix elements of L. Let [,(T) be matrix elements of the
matrices £(0, T'). Then
SASXD)
Ja(S7X)
Therefore in order to find /;; it is sufficient to determine /,,(T) by computer.
This can be done most simply as follows. Let us take our pseudotrajectory
Xo,..., X,. For every point X; we construct the matrices F'(X,) and £(0, iA),
where

lik = lik(T) - ldk(T) (5)

200, (i + DA) = [E + AF'(X)]2(0, iA) + 6%, , (6)

0% 1 is an error which appears as the result of our approximation procedure,
1044 I < B, where f takes into account the precision of the calculation. The
matrix £(0, nA) can be considered as an approximate value of £(0, 7). In
Section 7, [expression (19)] we derive an estimate of the difference £(0, nA)
- Z0,7):
120, nA) — £(0, T)|
< {(1 +2C))C10A + (C,C51Cs + C,C52C,C5)

x [AC,TA + C31)C51Cq + C, TA1}A 7)
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where C,o = C,(C,2C,T?*4 + C,C,2TA + BA~'T). It is worthwhile to note
that there is another method for the definition of /, which is similar to the
method of numerical differentiation. We do not write down the corresponding
estimates.

The values of ¢ and the matrix L depend only upon the part of the
trajectory of the point X°. The constant K, depends upon properties of the
dynamical system in the whole neighborhood W ().

Estimation of K,. For K, the following estimate is valid:

Ko < d[B(C* +1) + C,C«C, + B,p) + C,
+ C31C(CCsCor/d + CsCy + B,) + C,C5sCo/d + C5Cs] (8)
Here we denote
B, =2C,3C,nA, B, =2C,C,(C,* + HnA
C,=C,C;'C(Cy + C, + C3'C,CHC, + Bip)
Cy = C<B,p +1C,Cyp + C,C,B,p* + 1B,C,p°
Co = [C, +2B,2C,% + DI[Cy — p(C,Cs + Cep,)] ™1

This estimate is derived in Section 6.
Additive inequalities. All the estimates were derived under the assump-
tions that

exp(Csy/dA) — [1 + Csi/dA + H(Cs\/dA)Y T < HCsi/dA)?
and
exp(C,A) — 1 — C,A < C2A?

where A is the time step.

Use of the estimate. First we find a point X‘© and a sequence of its
pseudotrajectory the last point of which X, leads to the point X which is very
close to X, This is the only part where a high precision is needed in the
calculations (in the example of Section § the norm || X — X'©| is of the order of
107 1%). Next we choose p and roughly estimate constants C;, 2 < i < 6. The
estimation of C,; again requires the use of a computer. To do this we take
matrices F'(X;) and forall ¢, ¢,. ¢, = kA, t, = A, (k and /integers), A; > A,
we find the matrices £(¢,, t,), where

P(t,, (i + DA) = [E + AF(X)]2, , id) + 6%, ,

[see (6)] and estimate all norms ||.%(¢,, t,)||. The constant C, can be estimated
through the maximum of all these norms (see Section 8 for details).

Having C;, 1 < i< 6, and n we can estimate 7 < nA and the value p,
= kp, where

K < HC7IC* + 1)7HC, + 2C,Co(nA + 2pC3 1
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Next we can determine the boundaries for each matrix element /;,. This allows
us to estimate the precision with which we find matrices L — Eand (L — E)™!
and to get the estimate of the norm ||(L — E)~!||. Further we estimate K, with
the help of (8) and determine the value p, that enters into the criterion. If the
main inequality of the criterion is valid, we can conclude that the closed orbit
of the system (1) exists in the p, neighborhood of X,

3. PROOF OF THE MAIN CRITERION

The main criterion was formulated in Section 2. Here we give a proof
based upon a Newton method (see, for example, Ref. 6). This proof is due to
N. N. Chentzova. It is simpler than our original proof.

Weput GY = QY — Yand L, = L — E. The fixed point of the mapping
Q is a solution of the equation GY = 0. We look for Y by the method of
successive approximations. Put Y, =0, Y,,, = Y, — L7 Y(GY,). We have

Yk+1 = Yk - LII(QYk - Yk)
Yo — L' (YO + LY, - Y, + O, 1)
—L7'Y9O - L0, Y,

I

i

From this
1Yer: = Yl = IL7'Q:(YY) — @y (Y- DI < LT I1Q4(YY) — O4(Yi- 1)l

Assume that all Y;,0 </ < £, satisfy the inequality | ¥;| < pi. From the main
inequality of the criterion we have

12:(Y)) = Q1(Yi— )l < Kopol Yy — Yl
Y1 = Yol S ILyHIKopoll Vi — Yy | < (Kopoll Ly D
1Y, = Yoll,  Yy=~L7'YO, Y] < L7 e

and therefore

k k
1Y il < X 1Yy = Yill SHLT e Y, (147 M Kopo)
i=0 i=0

<Ly e — 1Ly Kopo) ™" < Po

Now we have || Y,|| < p, for all k and the limit lim,, , ¥, = Y exists. It is
obvious that GY =0 or QY =Y.

Unicity. Supposing that there exists another point Y, I )Z’H < po, for
which GY = 0; we have

0=GY-GY, L(Y-T1)=0,7) -0u«D)
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Therefore
17 = Y| = 127 10:(Y) — Qi < LT I Kopol ¥ = ¥
From the main inequality | L '|Kypo < 1. Therefore | ¥ — }:’H =0. QED

4. AN ESTIMATE OF THE DIFFERENCE BETWEEN A
SOLUTION OF (1) AND A SOLUTION OBTAINED
THROUGH THE LINEARIZED EQUATION

The results of this section are valid for systems (1) where the terms on the
right-hand side are polynomials of the second power. Let {SX® 0 << T}
be an interval of a trajectory of (1). The corresponding linearized system has
the form

dZjdt = F'(S,X'Z 9)
We denote by #(¢,, ¢,) the fundamental matrix of solutions of this system on

the interval (¢, ¢,). As before

C,= max [ 2L, 0)]

Osn<nsT

Let us take a point X which is close to X@, Y(0)=X — X @, Y(»)
= #(0, HY(0). In this section we investigate the difference S,X — S,X@
— Y(1) = 6,X(2). Let us put also X(2) = 8,X, XO(1) = S,X©, 6X() = X(2)
— XO).

Theorem 1. Let | Y(0)|| < p, where p satisfies the inequality p
< (2TC,2C,)~ 2. Then for B,(f) = 2C,3C,t

1S.X — SX @ — Yl < B, ()| Y(0)]? 0<:<T
Proof. We have

0, X(1) = f v (s, DIZEF"Y (5), Y(9) + (F"Y(s), 6, X(5))
0

+ 3(F"3,X(s), 0, X (s))] ds (10)

We have used F” = const and the fact that F'(X) is a linear function of X. Let
(1) = maxy<,, <, 10, X(#,)|l. From the last equation we have for s, 0 < 5 < ¢,

18:X(9)]| < Cys[FCL2CLI YO))1? + €, G, Y(0)[2(2) + 3C,2%(n)] (11)
Suppose that &, = 2,(¢) is the least root of the quadratic equation
1C1[3C Gl Y(0)? + C G YO 2 + 3C,2,°] = 2,
We shall show that 2(t) < Z,(t). As a matter of fact, for sufficiently small s we
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have 2(s) < 2,(t). Let the equality 2(s,) = 2,(¢) for some s, < ¢ be valid.
Then from (11)

$50C13C G YO)I? + C1 G| Y (0)[ 24 (1) + 3C,2,%(D] < 2

because s, < ¢, i.e., the equality D(so) = %,(¢) is impossible. Therefore for all
5, 0 <5 <1, we have 2(s) < 2,(1). Further,

1 1 2 1/2
2,(1) = (;5; ~C Y(O)ll2> - [(75; - C? Y(0)||2) - C,?| Y(O)Hz]

1 -1
<G Y(0)|12(?6— —C* Y(0)1|2> S 2UCPC|YO)?
2
because of the assumption concerning p. QED
Theorem 2. Let
1Y(0)| < p=min([2TC,>C,17 12, [4C, C,171, (2[2TC,C,1 712} 7)

Then, using the notations of Theorem 1 and putting B,(f) = 2tC,C,(+
+ C,?), we have
1(0/0y (0, X (N < B ()] Y(0)]

Proof. Differentiating both sides of (10) with respect to y; and using F”
= const, we get
0Y(s) oY(s)

i ' ) )
E@m:ﬁz@%@ﬁxnm>%Faw@n®

+ (F” Y(s), 5(;}— [élX(s)]) + (F”élX(s), % [51X(s)])} ds

Supposing
2;*(1) = max [[(¢/0y)(6, X (5))]

O<s<t
we can write
0
ay;

J

l < CULCPGIYO) + 2:C2C2| Y(0)))

(6,X)
+ CLGI YOI Z*(0) + 21C,C2 20| Y (0) 2] < Z* (1)

using the fact that Y(s) is a linear function of y;and ||0y(s)/dy;| < C,. Further
considerations as in Theorem 1 lead to

C13C2t + 2tC12C22]| Y(0)|
1~ C, G| YO — 2:C,C2| Y(O)II?

< 21C,C,(C,% + DI Y O)

() < | )]
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5. ESTIMATION OF THE ERROR IN THE
FINITE-DIFFERENCE METHOD

In this section we describe the finite-difference method which is
convenient for systems of type (1), where the terms on the right-hand side are
polynomials of power not higher than two, and investigate the error which
arises when this method is applied.

We write fi(xy...., xg) = f(X) in the form f(X)=(/, X)+ (BX, X),
where (/;, X) is linear form and (B.X, X) is quadratic form; in vector
notation F(X) = (/, X) + (BX, X). We replace system (1) by the system of
integral equations

X(H) = S.X(0) = X(0) + jl F(X(s)) ds

0

1.e., in coordinates,

x(1) = x(0) + JI fi(X(s)) ds, 1<i<d
0

In using the method of successive approximations to solve this equation
take as the zeroth approximation X,(r) = X(0); then the first approximation

T

X,(t) = X(0) + J F(X(0)) ds = X(0) + tF(X(0))
0

leads to the usual Euler method. Consider the second approximation:

Xy(n) = X(0) + J’ F(X(5)) ds
0

= X(0) + Jt [(, X(0)) + s(/, X(0)) + s(BX(0), X(0))
0

+ (BX(0), X(0)
+ 25(BX(0), F(X(0))) + s*(BF(X(0)), F(X(0)))] ds
= X(0) + 1[(/, X(0)) + (BX(0), X(0))]
+ 2[5 F(X(0)) + (BX(0), F(X(0)] + 53 (BF(X(0)), F(X(0))

The method of finite differences with the step A which we have used
transforms the point X into the point RX, where

RX = X + A[(l, X) + (BX, X)] + 1A2[(l, F(X)) + (BX, F(X))]

Let X,, X;,..., X,, be a pseudotrajectory of the length n + 1, T = nA, ie.,
[ X;+1 — RX;]| < a We shall estimate the norm [ S;X, — X,|/. The following
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considerations were used by Losinsky.!” Let us put Z, = X, — S;,X,. The
vector Z, characterizes the error at the moment kKA.

We consider the system of equations in variations along the trajectory of
the point

dZjdt = F'(S, Xo)Z (12)

We denote by £(1,, t,) the fundamental matrix of solutions of the system (12)
on the interval (¢,,7,). We make the inductive assumption Z,
= Y% o L(jA, kA)V; and look for recurrence equations for ¥;. We have

Zk-+1 = Xk+1 - S(k+1)AXO = Xk+l - SAXI( + (SAXk - S(kﬂ)AXo)
For the second difference we have
SaXie = Sk 1)aXo = SalZy + SiaXo) — Sa(SkaXo)
=LA (k+ 1DANZ, + 6,2,

k
= Y LU,k + DAV, + 6,7,
ji=0

)
Put Vi) = Xy — SaXi + 012,
From the standard estimations of the method of successive approxi-
mations we have

[ X1 — SAXkH = HXk+1 — RX, || + HRXk\_ SAXk”
< o+ exp(Csy/dA) — [1 + Co\/dA + X Cs/dAY]
+3C,C A

where C,C¢% = max,_, | (BF(X), F(X))||. Let us suppose that A is so small
that

exp(Cs\/dA) - [1 + Csi/dA + HCs/dN)?] < HCsa/d)* A
Then
1 Xes s — SaXill < 2+ [HCs/d)? + 1C,C2]A

From Theorem 1 we have
k 2
16, Zill < BI(A)CIZ[ o V}I[}
j=0

Now we make the inductive hypothesis || V| < AA%, 0 < < k, and we shall
find a condition on 4 under which the inequality is also valid forj = & + 1. We
have
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Wil S 1012l + 1 Xys s — S

A€/ D CC
5 +

< By(A)C2(k + 1)2A42A% + AZ[ :

=A {AZ [(C WD

A2

3 ] + Bl(A)CIZTZAz}

It can be seen from Theorem 1 that B,(A) is proportional to A. Therefore if

[(c NG Czcﬁ} 13

A—T*C2B, (A4 > ;

A2
we get ||V, || < AA% i
1 Z,]| < C,TAA (14)

This is the final estimate and coincides with (3). If we take the equality in (3) we
get the explicit expression (4) for A.

6. ESTIMATION OF THE CONSTANT KX,

In this section we shall derive an estimate for K, which takes into account
the properties of the nonlinear correction term Q,. As in Section 2, we
consider the plane I' and the Poincaré mapping P of the neighborhood
U,(X®)=T. Let PX9 =XV = §,X° Let us denote by /, the matrix
elements of the matrix L. Forevery X € U,(X®) the time ¢ = #(X) for the point
X = X9 + Y to move to the plane I can be found from the equation

X(XOW) + YD) + 8, X(D) = xX VD) + x(Y(D) + x,00,X@) =a  (15)

Let k > 0 be such that x(C, + B,p) <i(1 + C;'C,)™*, B, = B/(T)),
T, = T+ 2pC5 L.

Theorem 3. For every point X € U, (X?):

1. The interval of the trajectory {S,X, 0 < ¢ < T,} is contained in the 1p-
neighborhood of the trajectory {S, X%, 0 <t < T}

2. The Poincaré mapping P is continuous in ﬁ;p(X(d’) and

{(X) = TI< C3HCy + By YD Y]
3. For ¢ = |PX@ — X = ||S;.X@ — XO| < 3p

PXeU,(X)
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Proof. We have SX = 8X9+ Y(t) + §,X(¢), and on the basis of
Theorem 1 we get

1S.X = SXO < 1YWl + 16,X(0)]
<(Cr+ B YDIYI<(Cy +Bip)| Y] S K(C, + Bip)p <3p

Thus the first statement is proved. Let us consider moments T~ (X)) = T~
and T7(X,) = T such that x,(S;- X@) = a + £C,C; 'p and x,(S; . X¥) = a
—~ C3C; /4. Then

xo(S7-X) = xS7-X)| < (C; + Byp)|| Y|

(S X ) — xS7. X)| < (Cy + Byp)| Y|

Therefore
a+3CC5 ' p—k(Cy + Bip)p S xS X) < a+3C5CL ' p+w(Cy + Bip)p
a—3C,C ' p—k(Cy + Bip)p < xS X)<a~4C;C  p+1(C, + Byp)p

From the conditions concerning xk we have T~ <1 = i{X) < T*. Now we
shall prove the second statement of the theorem. We have

C5lH(X) — T| = G3li(X) — {(X)]
< xS X)) = x (S X = xS X) - af
= [xS:X”) — x(S:X) < (C, + B, | Y| Y]
Thus
{(X) — TI < C31(Cy + B YIDI Y
Finally, for the third statement of the theorem we have
IS:X — XOI < 1S:X = SpX1| + [1S7X — SpX O + S — X
< C,C3(Cy + B,p)kp + k(C, + B,p)p + ¢

=¢+ pr(C, + Bip)(C,C5 + 1) < p

QED.
Now we consider the main problem, namely the estimation of the
constant K,. We write

YO = Q,(X) = PX — L(X — X) — PX® — x©
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Using (5) for 1 <j < d — 1, we have

JASrX @) ¢

P = x (Y = x(SX @) — x(S;X ) + 705, X 0 2

Z L(T) yy

d—-1
+ Z [ljk(i) - ljk(T)]yk + -xj(élX(i)) + xj(STX(O) - X(O))
k=1
ne=x(Y), Y=X-Xx9
Let us estimate the derivatives dy{"/dy,. We can write

aygﬂ o G J(SX) “id
= IARTE ) Lrm
= f{S:X )5)/1 f(STX(O)) [a(T) + ; i ,k(t)a l)/k

- ot Ox(6,X(
T L (D)
k=1 Y

l

Differentiating both sides of (15) with respect to y,, we get
d—1

ot d 5
JASX®) -+ la® + T a0y,

0F  Ox0,X(®)

d S —
+ g LX) 3 S <0 a7

Using (17), we get from (16) the expression which we shall estimate

oy _ S8 X fj(SfX(O)) .
& [fd(STX@) ) = 7 (s xoy 'al ’]
-(SEX(O) a-1 g Ox,(0, X (2 ot 0 R
“g(sfxwg [(W e ar ))> E*a?,""(é‘m»]
ot it d

’a; ;Z‘lljkhzi,Vk + [[jl(i) - ljl(T)]
k=1

0 ot 0
x| X I ) N
+ [ % x{(0 X (D), ale + a x{0, X(®)
=J +J, + I3+ T+ Ts + T

From Theorem 2 we have

el < B(T)(Cy? + DI Y| (18a)
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From Theorem 3, part 2, we get

ol < CCS|T — 1] < C1C5(Cy + Bip)l Y|

1(S,X®) J(SX®)
FARS W)—) T) ~ 75X La(D)
(S X®) — F(SXO) SX (L) — 1D
< LT YATER  [PaR T 7 TdivIl
ST sy Nl D o

[ SASX ) D)
LS XN £ S7X )]

<(C,C31C5Ce + C,C7'CLCs + C,C52C,CsCHIT — 1|

+ /S X ) — fu(SzX )

S CGICHC, + Co + C3 ' CLC(C, + Bip)| Y] = G, ¥

{18b)

(18¢)

Now we shall estimate the terms which contain d2/dy,. From (17) we have

ot Ha@®l + l(ﬁ/ﬁyz)xd(o X(@)|
| lfa(S X N = NY LT ldlg@)/dil + 1(dfdr)x (3, X (D)
As before, |,(1)] < C,. Because of Theorem 2

0
’5 [x, 0, X(D]] < BT\ NCy2 + DI Y|
i

d |
rz lp(®)] < C,Cs

From (10) and Theorem 1

o .
é;xd(olX(t)) <[CsBp +3C,Cop + C,C, B p* + 5B, C,p 1| Y|

Thus
ot

oy

< C, + B(T)RC*+ 1) _
T G- p(C,Cs + Cyp) ?

and
2l € €3 'CalC,C5Coy/d + CsCo + By (T Y|
3l < C,CsCor/d | Y|
J5l < CsCol Y|

Collecting together the estimates (18a)—(18f), we get
10y /0y < K| Y|

=Gl Y|

(18d)
(18e)
(18f)
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where
Ky, = B{(T\}C,* +3) + C,C5[C, + B(T,)p] + C;
+ C5 ' CULC,CsCoy/d + C5Cy + By(T))] + C,C5Cor/d + CoCy

Now, we can put K, = dK,.

7. ESTIMATION OF THE MATRIX ELEMENTS OF THE
LINEARIZATION OF THE POINCARE MAPPING
WITH THE USE OF A COMPUTER

As in Section 2, let L denote the matrix of the linearization of the
Poincaré mapping P at the point X”. In this section we shall consider the
precision with which the matrix elements of L can be found by computer.
Using a computer we find approximately the matrix £ (0, 7) and, with (5), the
matrix elements /;; of the matrix L. As was mentioned in Section 2, the simplest
way to find the matrix £(0, T) consists in the following. We consider a
pseudotrajectory Xy, Xi,..., X, as before. For every point X; we construct
matrices F'(X;) and #(0, iA) where

L(0,iA) = [E+ AF(X;_ )20, (i — DA) + 6%

Here 0.% is the error arising from roundoff errors, [[.%4 /| < B. Then
Z(0, nA)is the approximate value of the matrix #(0, nA). In order to estimate
the error, we write

L0, (i + DAY — 2(O, (i + DA)
= [E + AF(X)][2(0, iA) — (0, iA)]
+ ALF(X}) — F'(SiaXp)]Z(0, iA)
+ [E + AF'(S;pX0)]2(0,iA) — 20, (i + DA) + 0%,
= [E + AF'(X)I[ZL(O, iA) — L0, iAN] + 6,%,,
where
1%, = ALF'(X) — F/(SyuXo)1.£(0, ih)
+ [E + AF(S;3X0) 120, iA) — 20, (i + DA) + 6%,
Now, we can write

(0, (i + 1)A) — 2(0, (i + 1)A) = Z H [E + AF'(X)]6, %,

k=0 j=k
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The constant C, also can be estimated approximately with the help of the
norms of the products [T, [E + AF'(X))] (see Section 8). Thus we can use the
inequality [|TT=, (E + AF'(X))ll < C, for arbitrary k, i. Then

120, 1) = 20,0 <C, L 16,4l

Let us estimate the norms ||§,.% | . Using the linearity of ' and Theorem 1 [see
(14)], we have

[F'(X3) = F'(SinXo)ll = [F'(X; — S;a X0l

< GllX; = SinXoll < C,CLiA%A
In an analogous way
ILE + AF'(S;aX)1Z(0, iA) — £(0, (i + DA)]
= |[[E + AF'(S;3 X)) L0, iA) — LA, (i + DAY.Z(0, iA)]
< GILE + AF(SiXo)] — ZGA, (i + DA)| < C,C,2A

The last estimate is obtained by the standard method of successive approxi-
mations. It is valid for A sufficiently small that exp(C,A) -1 ~ C,A
< C,*A%. Collecting together all the estimates, we get

6 =1200,n4) — 20, nd)| < C,[C*C,T* A + C,C2TA + (B/A)T] = Cyo

This is the final estimate. Using this estimate and putting
To = Lu(nA) — [Tu(nA) — fX)fd X ) Va(ndr)
where 7, (nA) are the matrix elements of the matrix Z(0, nA), we get
o — Ll < 6(1 4+ 2C)) + (C,C5'Cs + C,C52C,CHIX, — SpXol
< (L +2C)Cy + (C,C5'Cs + C,C32C,C)
x [2C51Co(C,TA + C5Y) + C,TATA (19)

As mentioned before, the matrix elements /;; also can be found by a procedure
similar to the method of numerical differentiation.

8. APPLICATION TO THE LORENZ MODEL

Afraimovich et al.,"¥ Guckenheimer,'® and Williams® have presented
theoretical and numerical investigations of the Lorenz model" which have
shed light on effects discovered numerically by Lorenz. We believe that a
method using a computer will have to be used in order to prove rigorous
results for this model. We shall establish rigorously the existence of a closed



Discovery of Closed Orbits of Dynamical Systems 43

orbit which according to Ref. 4 determines partly the boundary of the Lorenz
attractor.
We have considered the system of three ordinary differential equations

dx/dt = a,x + b, yz + byxz
dyjdt = a,y —byz — b,xz 20)
dz/dt = —asz 4+ (x + y)(b,x + byy)
This system is obtained from the usual Lorenz system with the help of a linear
change of variables. We used the following values of the parameters: r = 28, ¢
= 6, b = 8/3 (in the original notation of Lorenz).
According to Ref. 4, for these values of the parameters the stochastic

attractor already exists. The corresponding values of the coefficients of the
system (20) are

a, = 9.700378782, b, = 0.227266206
a, = 16.700378782, b, = 2.616729797
a, = 8/3 = 2.666666667, b, = 1.783396463

We have considered the Poincaré mapping of the hyperplane z = 27. With the
help of the method of trial and error the point X

x = 3.50078718468, y = 3.33033178466, z =27

was found. Calculations made with a time step A = 10~ ° in the difference
method described in Section 5 led to the points

X, = (3.5007926423; 3.3303411800; 27.0000342849)
X, = (3.5007846842; 3.330327479; 26.9999842901)

The calculation was made with double precision. This makes it possible for us
to take o« = 107 1. By linear interpolation we obtain the point

X = (3.500787119; 3.330331785; 27)

for which | X© — X| <2 x 107%.2 As we shall see, such a high precision is
needed for proving rigorous resuits.

Let us determine the constants C;. We put p = 0.001. It is easy to check
that we can take C, = 6, C; = 50, C, = 100, C5 =17, Cz = 110.

The main problem for which the computer is needed again concerns the
matrix L and the estimation of the constant C; . To determine the constant C,

2 The same point and some constants related to it also were found by J. Ford and his
collaborators. We use this occasion to express to them our sincere gratitude for their
participation in this work.
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we considered the sequence X;, 0 < 7 < n, which was obtained in the process
of calculation. For each interval of the sequence X, X; 1,0, Xiy 1051, With
i=10% and A, = 1072, where j is an integer, the matrix

i+103-1
LA, G+ DAY= I [E+107°F(XY]
k=1
was constructed and for every j,, j,, j; </j,, we found the matrices
j(lelsjzAl) = H g(jAu (/ + I)A)
Jis€j<j2
Next we estimated all norms ||.Z(j;A,, j>A;)|l. We obtained
¢, = max || L(j;A,, 0] = 23

J1.jz

Estimation of the difference |C, — C,]is based upon inductive considerations.
Let us denote

d; = max 1L 1AL JAD — LU AL LA
iz <]

Then for any j, <j + 1,

1L ArL G+ DAY —120hA G+ DAY
<NLUALJADIIZ AL, (G + DAY — LA G+ DAY
+ 1L 1Ay, jA) — j(leujAﬂ“
x | 2(jA,, (G + DA = LA, (G + DAY
+ | L0U1AL A = LA JA LA (G + DAY
<(C, + ) LA, (j+ DA — LUA,, G+ DAY
+d|2GAL G+ DAY

The value | Z(jA,, (j + 1)A, | also can be found from numerical calculations
on a computer. In our case it turned out that | ZL(jA,, (j + DA, <3.
Now we must consider

1LGAL, G+ DAY — L(A;L G+ DAY
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We have

12(AL G+ DAY = LA G+ DAY

(+1)103-1 )
SINLGAL G+ DAY — [ [E+ 1073F (Shi0-sX]I
k=j103
(+1)103-1
+A Y [T [E + 107 5F/(S),10-sX)]
k=j103 1<k

X [Ff(SklofﬁX(o)) - F'(Xp]

x [] [E+107°F(S,,10-sX)]

o>k

Let us estimate each term separately. We have

(G+1)103—-1

LUAL G+ DAY — [T [E+107°F(S0-sX]

k=j103

=Y LUATHOT AL + (k + DI07?) — 107 F/(Spy0-sX)
k
x [T [E+ 107 3F(S)10-sX )]
>k

We can estimate each term of the last expression by its norm. A rough
estimation shows that

| LA, A, + k1079 < 2% =e? <9

In the same way

<9

[T [E + 1075F/(S,, 10-sX*)]

i<k

The difference
LA, + k1072, jA; + (k + D107%) — [E + 107 F'(Sjs, 4 110-sX )]
can be estimated as follows. Let us consider two systems of matrix equations
¥ _ax
:l_t_ = F,(SjA1+k10'5X(0))X7 E = F(SjA1+k10‘5+zX(0))X
for 0 < ¢ < 107 ° with the initial conditions X = X = E. Let us put Z = X
— X. Then Z(0) = 0 and
dz

@ F,(SjA1+k10‘5+rX(0))Z + [F((St+jA1+k10“5X(0)) - F’(SjA1+k10*5X(0)])?



46 Ja. G. Sinai and E. B. Vui

In our case
l|F'(Sr+jA1+k1o-sX(0)) — F(Sja, +x10-sX )| €2 x 1077
for 0 < 1072, | F'(Sia, + k10 -5+ X )| < 200. With the help of continuous
mduct10n it is easy to show that |Z] < 400 x 107'° = 4 x 1078, From the
other side,
| X —[E + 10»SF/(SjA1+k10‘5X(O))]H <1078
Finally we get

999

Ly, G+ DAY — [T LE+ 1o—st(sjAl+m5Xm))]t

k=0

<6 x107°

From the inductive hypothesis we know the coefficient d; and therefore
12, ) <2AC, + d;) for arbitrary 7, , £, such that 0 < ¢, < t, < jA,. This
permits us to apply the results of Section 5 and to estimate the error ||S,, X
— X, |I. In view of (13) and (14),

1S X @ — X, < 2C, + dk x 10774

where the value A is found from (13) where C, is replaced by 2(C, + d;). Now
we can write

IF'(Ss X)) = FI(X)) <2008, X — X,

and get the estimate of the second term in (20). Collecting together all the
estimates, we obtain the estimate of C,. In our case it turns out that C; = 25,
Now we can estimate the value of K. Substitution of all the constants in (8)
gives the inequality K, < 5 x 105,

The estimation of ¢ was described in Section 2. In our case in formula (2),
[X — X9 <4 x 10~°, Estimating the norm X — X in the manner
described in Section 2, we obtain € < 1075,

For the norm 4 = (L — E) ™ '|| we have the inequality 4 < 21. Let us
put po =3 x 107°. Then in our case

(L — E) " '(e/po + KoPo) <21(1078 x 3 x 10° + 107° x 10%) < 1
Thus the main theorem is proved:

Main Theorem. In the Lorenz model with parameters » = 28, 0 = 6,
b = 8/3 a closed orbit exists. This orbit intersects the L x 10~ ®-neighborhood
of the point (3.5007871847; 3.3303317847; 27).
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