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In this paper we derive a general criterion which can be used for the discovery with 
the use of a computer of closed orbits of systems of ordinary differential equations. 
We apply this criterion to the Lorenz model and show rigorously the existence of a 
closed orbit for the case under consideration. In a subsequent paper we shall show 
how the stable manifold of this orbit determines the boundary of the stochastic 
attractor. 

KEY W O R D S :  Poincar6 mapping; linear system of equations in variations; 
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1, I N T R O D U C T I O N  

One of the most striking recent results in the theory of dynamical systems is 
the discovery of many examples of dynamical systems described by rather 
simple systems of ordinary differential equations where numerical in- 
vestigations show the presence of stochastic behavior (Lorenz model, Henon 
attractor, etc.), cl-3) There is no doubt that in many cases the rigorous 
treatment of such systems will be based upon information obtained with the 
help of computers. Thus there is a wide class of problems where rigorous 
results will be obtained with the use of computers. 

This paper is the first in a series whose goal is the presentation of a 
criterion of stochasticity which can be checked by a computer. Here we 
consider the much simpler problem of the discovery by computers of closed 
orbits of systems of ordinary differential equations having the form 

dxi /dt  = f ( x  1 ..... xa) , 1 <~ i <~ d (1) 

or, briefly, dX/d t  = F (X ) .  This problem arises in the investigation of 
stochasticity in the Lorenz model because, according to the results of 
Afraimovich et al., ~4) the boundary of the stochastic attractor is defined on 
the base of stable manifolds of corresponding closed orbits. 
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In Section 2 we formulate our main criterion for the existence of a closed 
orbit of the system (1) and present estimates of the coefficients which enter into 
the criterion. The computer is used to obtain these estimates and to verify the 
corresponding inequality. In Section 3 we prove the main criterion, and in 
Sections 4-7 we derive the estimations. The reader interested only in 
applications can omit these sections. In Section 8 we show the application of 
the criterion to the Lorenz model, proving rigorously the existence of a closed 
orbit for it for a special set of values of the parameters. 

Now we give our main notations. X, Y, Z are d-dimensional vectors; their 
coordinates are denoted by lower case letters xl, 1 ~< i ~< d, or x~(X), xi(Y),  

= xi2) ~/2. The one-parameter group of shifts xi(Z),  and the norm I[Xll (~/~=1 
along the trajectories of (1) is denoted by {St}. Let a be a fixed number; F 
= {X]xa(X ) = a} is a hyperplane in R e. Other notations are related to a 
neighborhood of a fixed interval 7 of a trajectory (1) which begins at the point 
X (~ ~ F: 

? = {X(~ 0 <~ t <~ T}, X(~ = StX(~ = S ,X  (~ 

x(O) , Namely, Wp(7) is the p-neighborhood of),, and Up( ) is the p-neighborhood 
of the point X (~ of  the form 

UP(X(~  k I y  d~ili=l [Xi(X) -- xi(X(~ < p 2  ]Xd(X) _ a l  < p}  

U ( 1 ) ( ) ( ( 0 ) )  = Up(X(~ ) F'~ F 

F'(X)  is the matrix llOfi(X)/~xjN. The value o fp  depends on the problem under 
consideration. We shall consider the linearized system corresponding to 7, 
namely dZ/dt  = F'(StX(~ We shall denote by ~ ( t l ,  t2) the fundamental 
matrix of solutions of this system on the interval t I <~ t ~ t 2. We put 

C1 = max 115~ 
O<~tl <~tz <~ T 

Suppose that the terms on the right-hand side of (1) are such that one can find 
a constant C2 for which 

Io f (x) I 
O~..~x-~YFk <. C2[I YLI [IZH, X e  Wp(7) 

i,j,k "~j t~k  

This constant always exists if thef~ are polynomials of powers not more than 
two. Further, let 

Ca = inf [fd(X)[, C 4 =  max max lf/(X)l 
Xe Up(X~O)) X~ Uo(X(O)) i 

C 5 =  max IlF'(X)lb, C 6 =  max IkF(X)[I 
Xe Up(X(o)) X a Uo(X(o)) 
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2. M A I N  CRITERION FOR THE EXISTENCE OF A CLOSED 
ORBIT OF (1) A N D  ITS V E R I F I C A T I O N  BY C O M P U T E R  

We begin with a theoretical criterion for the existence of a closed orbit of  
(1). Assume that the terms on the right-hand side of  (1) are C ~ functions. 
Choose a hyperplane F and an initial point X (~ = {x(~ ~ ..... x(~ ~ E F. We 
suppose that for some T > 0 the point S r X  (~ = X (1) ~ F, ~ = [IX (1) - X(~ 
and in a sufficiently small neighborhood U = F of  the point X (~ a Poincar~ 
C a mapping is defined which transforms a point X ~ U into a point P X  ~ F 

with the help of  the shift along the trajectory of the point X,  P X  (~ = X (1). We 
can expand P i n  a Taylor series in the neighborhood of the �9 v(O~ p o m t A  . W e p u t  

Y = X -  X (~ Q ( Y )  = P ( X )  - X *(~ X ~  U 

and write Q in the form 

Q ( y )  = y(O) + L Y  + Q ~ ( Y )  

Here y(O) = X(I~ _ x(O), L is the matrix of  the linear part  of  Q at the point Y 
= 0, and Q, is a nonlinear correction term. Suppose that the mapping Q 
satisfies the following condition: there exist positive constants Po, Ko such that 
for an arbitrary p ~< Po and arbitrary Y', Y", 1[ Y'H ~< P, FI Y"II ~< p 

HQ~(Y')  - QdY")IX ~< KopII Y '  - Y"N 

This inequality expresses the quadratic character of  Qt.  

C r i t e r i o n .  Let II Y(~ = e and for some Po ~< P0 

I ] ( t  - E ) - a l I ( E / ~ o  + Kofio) <~ 1 

Then in the Po o ,:(o) neighborhood o I a  there exists one and only one fixed point 
of  Q. 

We shall use a computer  to verify the validity of  the last inequality. First 
we shall write down the estimations of  all the numbers which enter into the 
main inequality. These estimations have been obtained under the assumption 
that the terms on the right-hand side in (1) are polynomials of  powers not 
more than two. This is the most  frequent case in applications. 

Es t imat ion  o f  e. Consider a finite-difference method with step At 
= A: Xi+ 1 = R X i ,  where R is a transformation which is an approximation of 
SA. In fact we get a sequence of  points Xo = X (~ X~, ~"2 .... .  Xn, I[)('i+ 1 
- -  RXitl <~ c~. The value of c~ depends upon the precision with which the 
calculations are performed and is the only parameter  that takes into account 
the properties of  the computer  that is used. In the general theory of dynamical 
systems a sequence of points Xi ,  0 <~ i <~ n, [tXi+ 1 - -  RXi[I <~ or, is called a 
pseudotrajectory (see the paper  by Bowen (5) on the role of  this concept in 
differential dynamics). 
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In the case under consideration the calculations have been performed 
until the corresponding intersection of the pseudotrajectory with the hyper- 
plane F. Let xd(X,-1) >1 a and Xd(X,) < a for some n. Using the usual linear 
interpolation we can find the point J( for which xd()7) = a. If P(X (m) = X (1), 
we have 

= IIX (*) -X(~ ~< ll)(- X(*)I] + ll)(- X(~ (2) 

The number LI X - X(~ is found from the results of calculations. We can write 
for the first term in (2) 

I k x -  x(1)ll < IIx (1) - s . ~ x  (~ - ( x -  x.)ll + JLs.~x (~ - x.H 

The number ]IS, aX (~ - X,I] is an error which appears as the result of the 
difference method used. In Section 5 we derive an estimate of this error in the 
case of the difference method convenient for systems (1) where the terms on 
the right-hand are polynomials of second power. This estimate takes the form 

HS.AX (~ - X.I] ~< ClnA2A (3) 

where A is the least root of the quadratic equation 

A - 2 (nA)2AC13C2  A2 --~ ~A -2 + A[~(CsN/d) 3 q- 1C2C62 ] (4) 

The estimation of the difference II X(1)- S.~Z (~ (~-X.)lh is done 
explicitly. 

Estimation of  matrix elements of  L. Let I~k( T ) be matrix elements of the 
matrices 5e(0, T). Then 

lik = lik(T) f/(SrX(~ Ink(T ) (5) (o) fa(SrX ) 

Therefore in order to find lik it is sufficient to determine l~k(T ) by computer. 
This can be done most simply as follows. Let us take our pseudotrajectory 
X0,..., X,. For  every point Xi we construct the matrices F'(Xi) and 5~(0, iA), 
where 

2 ( 0 ,  (i + 1)A) = [E + AF'(X,)] '2(0, iA) + &~,+, (6) 

6s176 + 1 is an error which appears as the result of our approximation procedure, 
[16~-w~+ 111 ~< fl, where fl takes into account the precision of the calculation. The 
matrix 5P(0, nA) can be considered as an approximate value of 2~(0, T). In 
Section 7, [expression (19)] we derive an estimate of the difference ~c~(0, hA) 
- ~ ( 0 ,  T) :  

I1~(0, nA) - ~e(0, T)II 

~< {(1 + 2C1)Clo A + (C~C31C~ + C,C~2C4C5) 

• [2(clTA + c~)c ;~c~  + C, TA]}A (7) 
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where C1o = CI(C12C2T2A + CICr 4- fizZ- 1 T).  It is worthwhile to note 
that there is another method for the definition of lik which is similar to the 
method of numerical differentiation. We do not write down the corresponding 
estimates. 

The values of  E and the matrix L depend only upon the part  of  the 
trajectory of  the point X ~~ The constant/Co depends upon properties of  the 
dynamical system in the whole neighborhood Wo(7). 

Estimation of  K o. For K o the following estimate is valid: 

Ko <<. d[B,(C,  2 + �89 + C~Cs(C, + B,p) + C? 

+ C3'C4.(C, C5C9~+ C8C 9 + B2) + CIC5C9,~+ C8C9] (8) 

Here we denote 

B i = 2 C 1 3 C z n A ,  B 2 = 2C1C2(CI  2 + 1 ) h A  

C7 = C1C3aC~(C4 + C6 + C3~C4C0)(C1 + BIp) 

C 8 = C~Blp + 1C1C2p + C 1 C 2 B I P  2 + 1 B I C 2 P  3 

C9 = [Cl + 2B1(2C12 + 1)][C3 - p1(C1C5 + C8pl)] -1 

This estimate is derived in Section 6. 
Additive inequalities. All the estimates were derived under the assump- 

tions that 

exp(Csx~A) - E1 + C~x~A + �89 2] ~< 1(C5,~z~)3 
and 

exp(C4A) - 1 - C4A ~< C42A 2 

where A is the time step. 
Use of  the estimate. First we find a point X (~ and a sequence of its 

pseudotrajectory the last point of  which X. leads to the point ~V which is very 
close to X (~ This is the only part  where a high precision is needed in the 
calculations (in the example of  Section 8 the norm JF R - X (~ is of  the order of  
10-2~ Next we choose p and roughly estimate constants Ci, 2 ~< i ~ 6. The 
estimation of C a again requires the use of  a computer.  To do this we take 
matrices F'(Xi) and for all t l ,  t2, tl = kAl,  t2 = lA1 (k and/integers),  A1 > A, 
we find the matrices 5r t2), where 

~ ( t , ,  (i + 1)A) = [E + A.F'(Xi)]c2(t,,  iA) + 65~,+, 

[see (6)] and estimate all norms II 5~(t~, tz)II. The constant C~ can be estimated 
through the maximum of  all these norms (see Section 8 for details). 

Having Ci, 1 ~< i ~< 6, and n we can estimate T ~< nA and the value Po 
= xp, where 

~c < ~(C3iC 4 + 1)- i [C1 + 2C~C2(nA + 2pC31)] -1 
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Next  we can determine the boundar ies  for each matr ix  element [ik. This allows 
us to est imate the precision with which we find matr ices L - E and (L - E ) -  
and to get the est imate of  the no rm II(L - E ) -  111. Fur ther  we est imate Ko with 
the help of  (8) and determine the value 15o that  enters into the criterion. I f  the 
main  inequali ty of  the criterion is valid, we can conclude that  the closed orbit  
o f  the system (1) exists in the 15o ne ighborhood  of  X (~ 

3. P R O O F  OF T H E  M A I N  C R I T E R I O N  

The main  criterion was formula ted  in Section 2. Here we give a p roo f  
based upon  a Newton  method  (see, for example,  Ref. 6). This p r o o f  is due to 
N. N. Chentzova.  It is simpler than our  original proof .  

We put  G Y  = Q Y  - Y a n d  L1 = L - E. The  fixed point  o f  the mapp ing  
Q is a solution of  the equat ion G Y  = 0. We look for Y by the method  of  
successive approximat ions .  Put  Yo = 0, Yk+ ~ = Yk -- L [  t (GYk) .  We have 

Yk+~ = Y R -  L I I ( Q Y k -  Yk) 

= y k - L ? ~ ( y ( ~  - Y k + Q ~ Y k )  

= - L ? I Y ( ~  _ L I 1 Q I Y k  

F r o m  this 

II Yk+l - Yk[I = I I L ; I [ Q I ( Y k )  - QI (Yk -1 ) ]H <~ IItUltl IIQ,(Yk) - Qa(Yk-~)l[ 

Assume that  all Yi, 0 ~< i ~< k, satisfy the inequali ty II Yi[I ~< 15o. F r o m  the main  
inequality of  the criterion we have 

IIQI(YD - Q1(Yk-OII ~< go 'o i l  Yk - Yk-lll 

[I Y k + l -  Ykll <. I l t ; l l l g o P o [ I Y k -  Yk- l l l  <<-(goPoHtlx[I)  k 

Y1 = - L 1  1YtO), IIYxll ~< IIL;I[]E II Y1 - YoJl, 

and therefore 

k 

i = 0  

k 

[I Y~+~ - Y~[I ~< HLI-~IIe ~, (HLi-tl[KotSo) ~ 
i = 0  

HL?'IIE(1 - - I IL[~HKo~o)  - '  ~ 15o 

N o w  we have H Yk[I <~ 15o for all k and the limit limk.oo Yk = Y exists. It is 
obvious  tha t  G Y = 0 or Q Y = Y. 

Unicity.  Supposing that  there exists ano ther  point  ~, ][ ~][ ~< t5o, for 

which G ~ = 0; we have 

0 = G Y -  G~,  L i ( Y -  ~) = QI (Y)  - Q , ( ~ )  
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Therefore 

! [ Y -  '~ll = t lZ?1[Qd ~) - Q t ( ~ ) ] l l  ~< i/L?~l]go~oll ? -  fll 

From the main inequality IIL~ -111KoP0 < 1. Therefore II Y -  Pll = 0. QED 

4. AN ESTIMATE OF THE DIFFERENCE BETWEEN A 
SOLUTION OF (1) A N D  A SOLUTION O B T A I N E D  
T H R O U G H  THE LINEARIZED EQUATION 

The results of  this section are valid for systems (1) where the terms on the 
right-hand side are polynomials of  the second power. Let {StX ~~ 0 ~ t <, T} 
be an interval of  a trajectory of (1). The corresponding linearized system has 
the form 

dZ/dt  = F'(S,X~~ (9) 

We denote by L,~ t2) the fundamental matrix of  solutions of this system on 
the interval (tl,  t2). As before 

C 1 = max IjL,~(t t, t2)l/ 
O<~tl <~t2<~T 

Let us take a point X which is close to X ~~ Y ( O ) = X - X  ~~ Y(t) 
= 2~v(0, t)Y(0). In this section we investigate the difference S,X _ ~ . ~  ,r~o) 
- Y(t) = 6~X(t). Let us put also X(t)  = S,X, X~~ = S~X ~~ 6X(t) = X(t)  
- X ( O ) ( t ) .  

T h o o r o m  1. Let ][Y(0)rl ~< p, where p satisfies the inequality p 
< (2 TG2 Cz )  -1/2. Then for Bl(t) = 2Cx3Czt 

JrS, X - S i X  (~ - r(t)N <~ gl(t)lr Y(0)Pl 2, 0 ~< t ~< T 

Proof. We have 

;0 (~lJf(t) = ~ ( s ,  t)[~(F"Y(s), Y(s)) + ( f "Y(s ) ,  61X(s)) 

+ �89 61X(s))] ds (t0) 

We have used F" = const and the fact that F'(X)  is a linear function of  X. Let 
~( t )  = maxo~,l ~ 1161X(t~)lj. From the last equation we have for s, 0 ~< s ~< t, 

Ir~l,,]x"(S)ll ~ CIS[1C12C2H.Y(O)II 2 --I- CICell Y(0)ll~(t) + �89 (11) 

Suppose that ~ = ~l( t )  is the least root of  the quadratic equation 

tCl[�89 2 + C1C211Y(0)ll~, + � 8 9  ~3 = ~ ,  

We shall show that ~( t )  ~< ~l(t). As a matter of  fact, for sufficiently small s we 
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have ~(s)  ~< ~l( t ) .  Let the equality @(So) = ~ l ( t )  for  some s o < t be valid. 
Then f rom (1 I) 

SoCl[�89 Y(0)ll 2 + C1C21[ Y(O)bl~l(t) + �89 < ~1 

because So < t, i.e., the equality ~(So) = ~ l ( t )  is impossible. Therefore  for all 
s, 0 ~< s ~< t, we have ~(s)  <~ ~l( t ) .  Further ,  

~ ( t )  = ClZl] Y ( o ) H  2 - - ClZll r ( 0 ) ] l  2 - C , 3 I ]  y(O)ll 2 

~< C131I Y(0)N t ~  - C~ztl Y(0)llZ <<" 2tCtSC21t g(0)ll2 

because of  the assumption concerning p. Q E D  

T h e o r e m  2. Let 

II Y(0)II ~< p = min([2 TC12C2] - 1/2, [4C1 C2] - 1, {2[2TCt C2] - 1/2} - !) 

Then,  using the notat ions of  Theorem 1 and putt ing B2(t ) = 2tCIC2( ~ 
+ C12), we have 

II(~/~Ys)(O~X(t))II <~ 82(011Y(0)II 

ProoL Differentiating both  sides of  (10) with respect to Ys and using F" 
= const, we get 

t F 'flY(s), 
~3y~ c3yj 

Supposing 
~s*(t) = max ]l(O/~yj)(flX(s))ll 

O<~s<~t 
we can write 

~ (6aX) <. Cxt[C~2C211Y(0)II + 2tC12C2211Y(O)II 2 

+ Ca Cz It Y(O)II ~s*(t) + 2tC1 C22~j*(t) tl Y(0)II 2] ~< @s,(t ) 

using the fact that  Y(s) is a linear function ofy j  and ]l OY(s)/t3Yj]l <~ C1. Fur ther  
considerat ions as in Theorem 1 lead to 

C13C2t + 2tC12C2211Y(O)tl 
~j*(t) ~< 1 - CaC211Y(0)ll - 2tC1Cz21l Y(0)II 2 II Y(0)II 

2tC1C2(C12 + �89 Y ( 0 ) t l  

QED.  
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5. E S T I M A T I O N  OF THE ERROR IN THE 
F INITE-DIFFERENCE M E T H O D  

In this section we describe the finite-difference method which is 
convenient for systems of  type (1), where the terms on the right-hand side are 
polynomials of power not higher than two, and investigate the error which 
arises when this method is applied. 

We write fi(x 1 ..... Xd) =f / (X)  in the form fi(X) = (]i, X) 4- (BiX , X), 
where (li, X) is linear form and (BiX, X)  is quadratic form; in vector 
notation F(X) = (l, X)  + (BX, X). We replace system (1) by the system of 
integral equations 

fo X(t) = S~X(O) = X(O) + F(X(s)) ds 

i.e., in coordinates, 

x~(t) = xi(O) + f~(X(s)) ds, 1 ~ i <~ d 
0 

In using the method of successive approximations to solve this equation 
take as the zeroth approximation Xo( 0 -= X(O); then the first approximation 

x l ( t )  = x (0)  + F(X(O)) ds = X(O) + tF(X(O)) 

leads to the usual Euler method. Consider the second approximation: 

fo x2(t)  = x ( o )  + F(XI(s) )  ds 

;o = x (0 )  + [(t, x (0) )  + s(t, x (0) )  + s(BX(O), x(0))  

+ (BX(O), X(0)) 

+ 2s(BX(O), F(X(0))) + s2(BF(X(O)), F(X(0)))] ds 

= x(0)  + t[(:, x (0) )  + (BX(O), X(0))] 

+ t2[�89 F(X(0))) + (BX(O), F(X(0)))] + lt3(BF(X(O)), F(X(0))) 

The method of  finite differences with the step A which we have used 
transforms the point X into the point RX, where 

R X  = X + A[(/, X)  + (BX, X)] + �89 F(X)) + (BX, F(X))] 

Let X o, X~ ..... X, be a pseudotrajectory of  the length n + 1, T = nA, i.e., 
] l X i +  1 - -  RXit] <~ a. We shall estimate the norm [ISrXo - X,,fJ. The following 
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considerations were used by Losinsky. (7) Let us put Zk = Xk - Sk~Xo. The 
vector Z k characterizes the error at the moment  kA. 

We consider the system of  equations in variations along the trajectory of 
the point 

dZ/dt  = F'(S, Xo)Z  (12) 

We denote by ~ ( t  1 , t2) the fundamental matrix of  solutions of  the system (12) 
on the interval (t l , t2).  We make the inductive assumption Z k 

= Z~= 0 L,e(jA, kA)Vj and look for recurrence equations for Vi- We have 

Z k + l  ~-" Xk+ l - -  S(k+ I)AXo ~-- Xk+ l -- SAXk  -~- (SAXk  -- S ( k t  l jAXo) 

For the second difference we have 

SA~f k -- S ( k + l ) A X o  = S A ( Z  k ~- Sk~XO) - SA(SkAXo) 

= ~-Z~(kA, (k + 1)A)Z k + 61Z k 

k 

= ~ ~ ( j A ,  (k + 1)A)Vj + 6~Z k 
j = O  

Put Vk+ 1 = X~+I -- S , X ,  + glZk.  
From the standard estimations of  the method of successive approxi- 

mations we have 

HXk+I - S6Xkll = llXk+~ - RXkH + IIRXk.- S~Xkll 

~< ~ + exp(Cs.~fdA) - [1 + C s ~ A  + �89 2] 
-~ I C 2 C 6 2 A  3 

where C2C6 2 >1 maxx~w [[(BF(X), F(X))II. Let us suppose that A is so small 
that 

exp(C~,f&) - E1 + c~, /2A + � 8 9  2] ~ ~(c~,J~)3~x ~ 

Then 

1 3 I L X k + ,  - S~XklI <<. ~ + E~(c~x/d) + ~c2C~2]A ~ 

From Theorem 1 we have 

r161/kll ~< BI(A)C12 II Viii 
L j  = 0 

Now we make the inductive hypothesis El Vjtl ~< AA 2, 0 ~<j ~< k, and we shall 
find a condition on A under which the inequality is also valid fo r j  -- k + 1. We 
have 



Discovery of Closed Orbits of Dynamical Systems 37 

IlVk+l][ ~< II~,Zkll + [IXk+~ -S~Xk]l 

It can be seen from Theorem 1 that B~(A) is proportional to A. Therefore if 

A -- T 2 C 1 2 0 1 ( A ) A  2 >~ -A2 + A § (13) 

we get I[ Vg+ 1[[ ~< AA2, i.e., 

HZ~ll ~< C~TAA (14) 

This is the final estimate and coincides with (3). If  we take the equality in (3) we 
get the explicit expression (4) for A. 

6. E S T I M A T I O N  OF THE C O N S T A N T  K 0 

In this section we shall derive an estimate for Ko which takes into account 
the properties of  the nonlinear correction term Q1. As in Section 2, we 
consider the plane F and the Poincar6 mapping P of the neighborhood 
Up(X (~ c F. Let PX (~ = X (1) = STX (~ Let us denote by lik the matrix 
elements of the matrix L. For  every X ~ Up(x  (~ the time f = f(X) for the point 
X = X (~ + Y to move to the plane F can be found from the equation 

xa(X(~ + Y( t )  + (~lX(t)) ~- Xd(X(~ '~ Xd(Y(t ) )  -~- Xd((~lX(t)) ~-- a (15) 

Let lc > 0 be such that ~(C 1 + B l p  ) < �89 + C~aC4) -1, B 1 = BI(T1) , 
T a = T + 2pC~ 1 

Theorem 3. For every point X e  U~p(X(~ 
1. The interval of  the trajectory {S,X, 0 ~< t ~< T 1 } is contained in the �89 

neighborhood of the trajectory {S,X (~ 0 ~< t ~< T 1 }. 
2. The Poincar6 mapping P is continuous in UKR(X (6)) and 

I~(Y) - TI <~ C3~(C~ + B~][ Yll)I] Ylr 

3. For  e : IIPX (~ - X<~ : liST Xr176 - X(~ ~ ~p, 

P X  ~ U, (X  (~ 
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Proof. We have S , X =  S tX  (~ + Y(t) + 61X(t),  and on the basis of  
Theo rem 1 we get 

IIS, X -  s,x(~ <~ II Y(t)ll + l161X(t)ll 

(C1 -Jr- 8111YII)II YII ~< (ca + Blp)[[ Y[I <~ ~(C1 + Blp)p < l p  

Thus  the first s ta tement  is proved.  Let us consider momen t s  T - ( X  (~ = T -  
and T+ (Xo) = T + such that  xe(Sr  x(o)) = a + �88 l p and Xd(Sr+X (~ = a 
- C3C21/4. Then 

Ixa(az-X (~ -- xa(ST X)l ~< (C 1 -[- BlP)l] Y[I 

[Xd(ST +X(O)) -- Xd(ST+S)[ ~ (C1 -~- Blp)II YH 

Therefore  

a + �88 2 ~p - x(C~ + B lp )p  <<. Xd(S r X )  <~ a + �88 , tp + K(C1 + Blp)p  

a - 1 C  3 C ,$  l p  _ E ( C a  + Bap)p <~ xd(Sr+X) <~ a - �88 2 lp + x(C1 + Blp)p  

F r o m  the condi t ions concerning x we have T -  ~< i = ~(X) ~< T +. N o w  we 
shall prove  the second s ta tement  o f  the theorem.  We have 

CaI~(X) - T [ - -  CaII(X) - ~(X(~ 

<~ IXd(S~X <~ -- xa(atxt~ = [xd(S~X (~ - a[ 

= lxa(S~X (~ - xa(S~X)l ~< (Ca + nt  ]1Yll)H YII 

Thus  

[ ~ ( X ) -  TI <<. C31(Ca + 8111Yll)It YII 

Finally, for  the third s ta tement  of  the theorem we have 

IIS~X- x(~ ~< IISzX- s~xII + I IS~X-  STX(~ + IISTX ~~ - X ( % l  

C4C 31(C 1 -{-- Bap)xp + x(C1 + B~p)p + e 

= E + p x ( C  a + Bap)(CgC~ I + 1) < p 

QED.  
N o w  we consider the main  problem,  namely  the es t imat ion of  the 

cons tant  K0. We write 

y(1) = Q I ( X  ) = P X -  L ( X -  X (~ - P X  (~ - X (~ 
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Using (5) for 1 ~ j  ~< d -  1, we have 

. .~ x j ( y . ) )  x j (S#(O))  _ ..(o~ Jj(Sr X(~ '~y*- 
YJ = = xj(Sra J + fd(Sr X(~ k=l ldk(T)yk 

d-I  
+ ~ [l/k(t) -- ljk(T)]yk + xj(a,X(f))  + x~(SvX (~ - X (~ 

k=l 

Yk = X k ( Y ) ,  Y = X -  X t~ 

Let us estimate the derivatives ~v~l)/Sy~. We can write 

0Y51) -- fj(S~X (~ + - -  la, (T) + Z ~ ljk(t) ~ Yg 
8yz J~( STX (~ k = i 

d -  ~ 8 8~ 8x j (6  ~ X q ) )  
+ E [6,(0 - 6~(T)] + b7 [x](a~x(O)]t,=,s::_. + 

k = 1 uYz 8Yl 
(16) 

Differentiating both  sides of  (15) with respect to Yt, we get 

a~ d-I d [ldk(~)]y k L(sW~ Uy, + t~,(~) + ~:,E 

d 6 8~ + ~ [x~( ,xq))] ~y~ + - -  
8x~(6 ~ x(~))  

8Yl 
- 0 (17) 

Using (17), we get f rom (16) the expression which we shall estimate 

8Y~)) - [ fJ(SrX(~ lnl(T) 8y I [ _ ~  f ~ ) ~ / a z ( t ) ]  

fd(S~ X(~ L\k =, dt ,=~ Yk + & / 8Yl 

8~ ~-1 d 
+ t3 7 k~=, dt l'kl'=~Yk + [li'(~) -- I,,(T)] 

+ N x j ( a , x ( t ) ) l , = ~  + ~ x j ( a , x ( t ) )  

= J1 + J2 q-" J3 A- J4 "f- J5 q- J6 

+ ~ xd(6~X(t)) 1 

F rom Theorem 2 we have 

I J61 ~ BI(T1)(C12 -~- �89 YJl (18a) 
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From Theorem 3, part  2, we get 

IJ4[ ~< CICsIT - ~[ <~ C1C5(C 1 -~- B~p)[I Yil (18b) 

f j (sTx ~~ fj(s~x ~~ /~,(~) 
IJ~L <. ~ t~,(T) f~(S~X~o~) 

~< Ifj(S~X (~ -f/S~X~~ ila,(T)[ + {f~(S~X~~ {la~(T) - ldt(t)l 
Ifa(SrX~~ IJ~(SrX~~ 

+ Ifj(a,x<~ I/d,(t)l ifd(S~X{O)) _.f~(STX~O))l 
I f d( S~X~~ I f d( SrX~~ 

<~ (C1C31C5C6 + C1C31C4C~ + C~C32C,~C5C6)1 T -  tl 

<~ C1C3~C~(C~ + C6 + C~IC4CO(C, + n~p)ll Yll = C~ll Yil (18c) 

N o w  we shall estimate the terms which contain ~t/OYt. F rom (17) we have 

a-~, I~,(~)1 + I(a/ay,)x~(61 x(~))l 
~ <~ [L(s~x~~ II YII I-E~{ Idlau(~)/dtt + I(d/dt)xn(a,X(~))l 

As before, I/d,(~)l ~< C,.  Because of  Theorem 2 

~y_[Xa(baX(t)) ] <~ B~(T,)(C 2 + 1)j) YIJ 

d ld~(l) <~ CIC~ 

From (10) and Theorem 1 

~xd(alX(t)) <<. [CsB lp + �89 C2p + C1C2B1-~- IB ,  C2p 3][I II = C~ll il p2 2 Y Y 

Thus 

and 

S fyt C 1 + B~(T~)(2C1 z + 1) 
<~ C3 - p(C1C5 + Csp) = C9 

I J21 ~ C31C4[C, C5C9~ d + C8C9 + Bz(T,)]H YLI (18d) 

I J31 ~< C~CsCgx/d II ]111 (18e) 

[Js[ ~< C8C911YII (18f) 

Collecting together the estimates (18a)-(18f), we get 

I~y~'/~y,I < K11/Y/I 
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where 

K1 = BI(TO(C12 + �89 + CIC5[C1 + BI(T1)p] + C7 

Jr- C31C4ECiC5C9~-~ C8C 9 -Jr-B2(TO] + CiC5C9~ + C8C 9 

Now, we can put Ko = dK~. 

7. E S T I M A T I O N  OF THE M A T R I X  ELEMENTS OF THE 
L INEARIZATION OF THE POINCARI~ M A P P I N G  
WITH THE USE OF A C O M P U T E R  

As in Section 2, let L denote the matrix of the linearization of the 
Poincar6 mapping P at the point X (~ In this section we shall consider the 
precision with which the matrix elements of L can be found by computer. 
Using a computer we find approximately the matrix 5r T) and, with (5), the 
matrix elements l u of  the matrix L. As was mentioned in Section 2, the simplest 
way to find the matrix ~ (0 ,  T) consists in the following. We consider a 
pseudotrajectory Xo, X, ..... X, as before. For  every point X~ we construct 
matrices F'(Xi) and ~~ iA) where 

2 ( 0 ,  iA) = [E + AF'(Xi_ , ) ] 2 (0 ,  (i - 1)4) + 3c, q~ 

Here 3~/ is the error arising from roundoff  errors, HOL~i+I]J ~<fl. Then 
2 ( 0 ,  hA) is the approximate value of  the matrix 5r nA). In order to estimate 
the error, we write 

~ (0 ,  (i + 1)A) - 2 ( 0 ,  (i + 1)4) 

= [E + AF'(X~)][&~ iA) - 2 ( 0 ,  iA)] 

+ AEF'(X,) - F'(S, AXo)]SY(O, iA) 

+ [E + AF'(SiaXo)]5~(O, iA) - ~q~(O, (i + 1)4) + 3c, c~+, 

= [E + AF'(X,)][~(0,  iA) - 2 ( 0 ,  iA)] + 0 , 4 + ,  

where 

6 , 4 + ,  = A[F'(Xi) - F'(S,AXo)]~(O, iA) 

+ [E + AF'(S~aXo)]5~(O, iA) - ~,('(0, (i + 1)4) + 0 ~ + ,  

Now, we can write 

i i 

~(0 ,  (i + 1)A) - 2 ( 0 ,  (i + 1)A) = ~ [-I [E  + AF'(Xj)] 0 1 ~  k 
k = O  j=k  
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The constant C1 also can be estimated approximately with the help of the 
norms of the products 17I~=k [E + AF'(Xj)] (see Section 8). Thus we can use the 
inequality [lI]~=k (E + AF'(Xj))H ~< C1 for arbitrary k, i. Then 

i 

IlY(0, T) - ~ (0 ,  nA)ll ~ C, ~ 1161~1i 
k=0 

Let us estimate the norms ql 6 1 ~  ]L. Using the linearity of F' and Theorem t [see 
(14)], we have 

II F ' ( ~ )  - F'(S,~Xo) ll = II F"(Xi - SiaXo)I[ 

~< C21!Xa - S~AXoll ~< C1C2iA2A 

In an analogous way 

IIUE + AF'(S~aXo)]~(O, iA) - ~-~(0, (i + 1)A)ll 

= ]lIE + AF'(SzAXo)]Sq(O, iA) - ~L.~(iA, (i + 1)A)&P(0, iA)t[ 

<. C~]I[E + AF'(SiaXo)] - ~(iA,  (i + 1)A)H ~< C~C42A z 

The last estimate is obtained by the standard method of successive approxi- 
mations. It is valid for A sufficiently small that exp(C4A ) - 1 -  C4A 
~< C42A 2. Collecting together all the estimates, we get 

6 = 115r nA) - 5~(0, nA)l I ~< CI[C12C2TZA + C1C42TA + (fl/A)T] = C10 

This is the final estimate. Using this estimate and putting 

~k = ~k(hA) -- [~k(nA) --fi(X,)/fd(X,)]~k(nA) 

where ~k(nA) are the matrix elements of the matrix 5r nA), we get 

Ilik -- T/kl ~< 6(1 + 2C1)  A- (CIC3~C5 "4- ClC32C4C5)1Xn - SrXot 

~< (1 + 2C1)C1o + (C1C31C5 + C1C32C4C5) 

x [2C31C6(C1TA + C3 l) + C~TA]A (19) 

As mentioned before, the matrix elements l~k also can be found by a procedure 
similar to the method of numerical differentiation. 

8. A P P L I C A T I O N  TO T H E  L O R E N Z  M O D E L  

Afraimovich et al., (~) Guckenheimer, (8) and Williams ~9) have presented 
theoretical and numerical investigations of the Lorenz model (1) which have 
shed light on effects discovered numerically by Lorenz. We believe that a 
method using a computer will have to be used in order to prove rigorous 
results for this model. We shall establish rigorously the existence of a closed 
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orbi t  which accord ing  to Ref. 4 de termines  pa r t ly  the b o u n d a r y  o f  the Lorenz  
a t t rac tor .  

We  have cons idered  the system of  three o r d i n a r y  differential  equa t ions  

dx/d t  = a l x  + b l y z  + b l x z  

dy/dt  = a2y  - bl y z  - b j x z  (20) 

dz/dt  = - a 3 z  + (x + y ) ( b z x  + b j )  

This system is ob ta ined  f rom the usual  Lorenz  system with the help o f  a l inear  
change  o f  variables.  We  used the fol lowing values o f  the pa rame te r s :  r -- 28, o 
= 6, b = 8/3 (in the or iginal  no t a t i on  o f  Lorenz).  

A c c o r d i n g  to Ref. 4, for these values o f  the pa rame te r s  the s tochast ic  
a t t r ac to r  a l r eady  exists. The co r r e spond ing  values o f  the coefficients o f  the 
s y s t e m ( 2 0 )  are 

al = 9.700378782, 

a2 = 16.700378782, 

a3 = 8/3 = 2.666666667, 

bl = 0.227266206 

b 2 = 2.616729797 

b 3 = 1.783396463 

We have cons idered  the Poincar6 m a p p i n g  o f  the hype rp lane  z = 27. Wi th  the 
help o f  the m e t h o d  of  trial and  e r ror  the po in t  X (~ 

x = 3.50078718468, y = 3.33033178466, z = 27 

was found.  Ca lcu la t ions  made  with a t ime step A = 1 0 - s  in the difference 

me thod  descr ibed in Sect ion 5 led to the poin ts  

X, = (3.5007926423; 3.3303411800; 27.0000342849) 

X, + 1 = (3.5007846842; 3.330327479; 26.9999842901) 

The ca lcu la t ion  was made  with doub le  precision.  This makes  it possible  for us 
to t ake  e = 10 -a s .  By l inear  in te rpo la t ion  we ob ta in  the po in t  

.~ = (3.500787119; 3.330331785; 27) 

for which IqX ~~ - J([I <~ 2 x 1 0 - 9 .  2 AS we shall see, such a high precis ion is 

needed for  p rov ing  r igorous  results.  

Let  us de te rmine  the cons tan ts  C~. We put  p = 0.001. It is easy to check 
that  we can take  C2 = 6, C3 = 50, C~ = 100, C5 = 17, C 6 = 110. 

The ma in  p rob l em for which the c o m p u t e r  is needed again  concerns  the 
mat r ix  L and  the es t imat ion  o f  the cons tan t  C l . To  de te rmine  the cons tan t  C~ 

2 The same point and some constants related to it also were found by J. Ford and his 
collaborators. We use this occasion to express to them our sincere gratitude for their 
participation in this work. 
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we considered the sequence X;, 0 ~< i ~< n, which was obta ined in the process 
of  calculation. For  each interval o f  the sequence X~, X~ + ~ ..... X~ + ~0~- 1, with 
i = 103j and A 1 = 10 -2,  where j is an integer, the matr ix  

5~(jA1, ( j  + 1)A1) = 
i+  1.0 3 - l 

I-I [E  + 10-  SF'(Xk)] 
k = l  

was constructed and for  every J l ,  J2, Jl < J2, we found the matr ices 

~ ( J l A 1  'j2At) = H "~(JAI, (J + I)A) 
J~ ~J<J2 

Next we est imated all norms  [15~(jlA ~ ,j2AI)II. We obta ined 

Ca = m a x H ~ ( j l A 1  , j 2 A 1 ) H  = 23 
J l , j 2  

Est imat ion  of  the difference [C 1 - C~lis based upon  inductive considerat ions.  
Let us denote  

dj = max IISg(j~A 1 ,j2A1) - -  ~ 9 ~ ( j l A  1 ,j2A,)It 
j l , j2  ~ j 

Then for any Jl  < J + 1, 

II~~ (j  q- 1)A~) -Jc~/(j~A,, (j q- 1)A,)I / 

~< I]~(j~Aa ,jAa)ll bl~(jA~, (j  + 1)A~) - 5('(jA~, (j  4- 1)Al) 

+ ] IS( j l  A, , jA , )  - ~ ( j , A ,  ,jA1) N 

• ]I~LP(jA1, ( j  + 1)A1) - ~ga(jax, ( j  + 1)61)11 

+ I]L~'(j,A~ ,jA1) -- ~ ( j l A I  ,jA)It I]~Lf(jA1, ( j  + 1)A1)[] 

~< (Ca + dflllLg'(jA1, ( j  + 1)AI) - Y'( jA~, (j + I)Aa)N 

+ dj]lLZ~(jA1, ( j  + 1)A~)II 

The value t I~ ( jA  1 , ( j  + 1)A1 II also can be found f rom numerical  calculat ions 
on a computer .  In our  case it turned out  that  11s ( j  + 1)A1 II ~ 3. 

N o w  we must  consider 

I lff ' ( jAl,  ( j  + 1)At) - ~ ' ( j A , ,  ( j  + 1)A~)il 
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We have 

I[5~(jA1, ( j  + 1)A1) - ~ ( j A ~ ,  ( j  + 1)A01I 

( j +  1 ) 1 0  3 -- 1 

~< [ I~( jA~,  ( j  + llA1) - iv[ [ E +  lO-SF'(Sklo-sX(~ 
k = j l 0  3 

( j +  1 ) 1 0  3 - 1 

+ A  ~ ~ k  [ E +  10 5F'(S~,lo_~X~~ 
k = j l O  3 l 

• [F'(Skl 0 5X (0)) _ F'(Xk) ] 

• ,~>k ~]  [ E +  10-SF'(Sz~lO ~X~~ 

Let us est imate each term separately.  We have 

( j +  1 ) t o  3 - 1 

~ ( J ~ l ,  (J + l IAr)  - IF[ [ E  + 10- 'F ' (Sklo-sX~~ 
k = j l 0  3 

= ~ ' ' A  + k l ~  5 "A 5)  tJ 1 ,J 1 + (k + 1)10- - IO-SF'(Sklo-~X ~~ 
k 

• l-] [ E +  IO-SF'(Sz~o-sX~~ 
l > k  

We can est imate each te rm of  the last expression by its norm.  A rough 
es t imat ion shows tha t  

I rS~ 1 + k l0-5)H ~< e 2~176 = e 2 < 9 

In the same way 

I I]<k [E + lO-SF'(Sl,lo-sX~~ < 9 
l 

The difference 

5r 1 + k l 0 - 5 , j A 1  + (k + 1)10 -5)  - [ E  + lO-SF'(Sjal+~lo-sX~~ 

can be es t imated as follows. Let  us consider  two systems o f  matr ix  equat ions  

dX  dX  
dt - F'(SJaI+ka~176 dt = F'(SJa'+kl~176 

for  0 ~< t ~ 10 -5 with the initial condi t ions 37 = X = E. Let  us put  Z = X 
- ,~. Then  Z(0)  = 0 and 

dZ 
- -  = [F (S,+ja~+klo-,X ) -- F ' (Sj~ +klO 'X~~ )7 dt F'(SJA'+kl~176 + ' co) 
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In our  case 

[ IF ' (S ,+ ja i+k lo - sX  (~ - F(Sja,+klo-sX(O))[I  ~< 2 • 10 -3 

for 0 ~ t ~< 10 -5, t lF'(SjA,+klO 5+,X(~ ~< 200. With the help o f  cont inuous 
induction it is easy to show that  [IZII ~< 400 x 10 - a ~  = 4 x 10 8. F rom the 
other side, 

I [ X - [ E  + IO-SF'(SjAI+klo-sX(~ H <~ 10 - s  

Finally we get 

~ ( J A 1 ,  999 5X(~ (J + 1)A1) - 1-1 [E  + lO-SF ' (S ja~+k lo  - ~< 6 x 10 -2 
k=0 

From the inductive hypothesis we know the coefficient d r and therefore 
/IL-~(tl, t2)N ~< 2((~1 + dj) for arbitrary t i ,  t 2 such that  0 ~< tl ~< t2 ~<jA1. This 
permits us to apply the results o f  Section 5 and to estimate the error I/SkaX (~ 

- -  Xkll. In view of  (13) and (14), 

IISk~X (~ -- Xk[I <~ 2(C1 + dj)k  x 10-VA 

where the value A is found f rom (13) where C1 is replaced by 2(C1 + dr). N o w  
we can write 

II F'(ak6  X(~ - F'(Xk)1] ~< 200/I Sk~X (~ -- Xk [I 

and get the estimate o f  the second term in (20). Collecting together all the 
estimates, we obtain the estimate o f  C1. In our  case it turns out that  C1 = 25. 
N o w  we can estimate the value of  Ko. Substi tution o f  all the constants  in (8) 
gives the inequality K0 ~< 5 • 105. 

The estimation ofe  was described in Section 2. In our  case in formula  (2), 
It.g - X(~ ~< 4 x 10 -9. Estimating the no rm I1.~ - X(1)II in the manner  
described in Section 2, we obtain e ~< 10 -8. 

For  the no rm A = II(L - E) - l l l  we have the inequality A ~ 21. Let us 
put/~o = �89 x t0 -6. Then in our  case 

II(L - E)-lll(e/r + KofSo) ~< 21(10 -8 • 3 x 106 + 10 6 X 104) < 1 

Thus  the main theorem is proved:  

Main T h e o r e m ,  In the Lorenz model  with parameters  r = 28, cr = 6, 
b = 8/3 a closed orbit  exists. This orbit  intersects the i x 10- 6-neighborhood 
of  the point  (3.5007871847; 3.3303317847; 27). 
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